Mengenai Saya

Foto saya
INILAH AKU...... AKU GA PKE BAJU

FOLLOW UNDA LAH

Pengikut

TUJUAN CORETAN INI
Ini cuma coretan, keluhan dan keresahan saat jalan-jalan keliling banjarmasin,,,,
semoga ini bermanfaat

FEATURED POSTS

Senin, Oktober 19, 2009 | |

GAYA PEGAS

  1. Elastisitas dan Hukum Hooke

    Bila suatu benda dikenai sebuah gaya dan kemudian gaya tersebut dihilangkan, maka benda akan kembali ke bentuk semula, berarti benda itu adalah benda elastis. Namun pada umumnya benda bila dikenai gaya tidak dapat kembali ke bentuk semula walaupun gaya yang bekerja sudah hilang. Benda seperti ini disebut benda plastis. Contoh benda elastis adalah karet ataupun pegas. Bila pegas ditarik melebihi batasn tertentu maka benda itu tidak akan elastis lagi. Lalu bagaimanakah hubungan pertambahan panjang dengan gaya tarik?

    Karena besarnya gaya pemulih sebanding besarnya pertambahan panjang, maka dapat dirumuskan bahwa:

    Gaya Pemulih

    dengan,
    k = konstanta pegas
    Fp = Gaya Pemulih (N)
    x = Perpanjangan Pegas (m)
    Persamaan inilah yang disebut dengan Hukum Hooke. Tanda negatif (-) dalam persamaan menunjukkan berarti gaya pemulih berlawanan arah dengan arah perpanjangan.
  2. Modulus Elastisitas

    Yang dimaksud dengan Mosdulus Elastisitas adalah perbandingan antara tegangan dan regangan. Modulus ini dapat disebut dengan sebutan Modulus Young.

    1. Tegangan (Stress)
      Tegangan adalah gaya per satuan luas penampang. Satuan tegangan adalah N/m2 Secara matematis dapat dituliskan:
      Tegangan
    2. Regangan (Strain)
      Regangan adalah perbandingan antara pertambahan panjang suatu batang terhadap panjang awal mulanya bila batang itu diberi gaya. Secara matematis dapat dituliskan:
      Regangan

    Dari kedua persamaan di atas dan pengertian modulus elastisitas, kita dapat mencari persamaan untuk menghitung besarnya modulus elastisitas, yang tidak lain adalah:

    Modulus Elastisitas / Young
    Satuan untuk modulus elastisitas adalah N/m2
  3. Gerak Benda di Bawah Pengaruh Gaya Pegas

    Bila suatu benda yang digantungkan pada pegas ditarik sejauh x meter dan kemudian dilepas, maka benda akan bergetar. Percepatan getarnya itu dapat dihitung dengan persamaan:

    Percepatan Getar
    Dari persamaan di atas, kita mengetahui bahwa besarnya percepatan getar (a) sebanding dan berlawanan arah dengan simpangan (x)

1 Comment»

indahnya kota banjarmasin

Minggu, Oktober 11, 2009 | |

indahnya kota banjarmasin

No Comment»
Sabtu, Oktober 03, 2009 | | Label:

No Comment»

buku fisika SMA XA

Sabtu, Oktober 03, 2009 | | Label:

BAB I

BESARAN DAN SATUAN

Apa Itu Fisika ???

Fisika adalah sains atau ilmu tentang alam dalam makna yang terluas. Fisika mempelajari gejala alam yang tidak hidup atau materi dalam lingkup ruang dan waktu. Fisika juga dapat dikatakan ilmu yang mempelajari aspek-aspek alam yang dapat dipahami dengan dasar-dasar pengertian terhadap prinsip-prinsip dan hukum-hukum elemennya. Selanjutnya fisika dapat didefinisikan dalam berbagai pengertian, satu diantaranya mengatakan bahwa fisika adalah ilmu yang mempelajari suatu zat dan energi atau zat dan gerakan. Secara umum fisika adalah cabang sains yang mempelajari materi, energi, ruang, dan waktu.

SATUAN FISIKA

Satuan didefinisikan sebagai pembanding dalam suatu pengukuran besaran. Setiap besaran mempunyai satuan masing-masing, tidak mungkin dalam 2 besaran yang berbeda mempunyai satuan yang sama. Apa bila ada dua besaran berbeda kemudian

mempunyai satuan sama maka besaran itu pada hakekatnya adalah sama. Sebagai contoh Gaya (F) mempunyai satuan Newton dan Berat (w) mempunyai satuan Newton. Besaran ini kelihatannya berbeda tetapi sesungguhnya besaran ini sama yaitu besaran turunan gaya.

Sistem satuan internasional telah disepakati pada tahun 1960 oleh Konferensi Umum Kesebelas mengenai berat dan ukuran, dengan nama Sistem international (SI). Sistem satuan internasional menggunakan satuan dasar meter, kilogram, dan sekon, atau biasa disebut sistem MKS dan satuan yang lain yang biasa dipakai dalam fisika adalah centimeter, gram sekon atau sistem CGS.


satuan

http://dasweetstrawberry.blogspot.com/2009/03/satuan-fisika.html - commentsBESARAN FISIKA

Besaran adalah segala pengertian yang kepadanya dapat dikenai ukuran, misalnya panjang , waktu, massa, gaya, torsi. Dengan kata lain besaran merupakan segala sesuatu yang dapat diukur dan dinyatakan dengan

angka, misalnya panjang, massa, waktu, luas, berat, volume, kecepatan, dll. Warna, indah, cantik, bukan merupakan besaran karena tidak dapat diukur dan dinyatakan dengan angka. Dari pengertian di atas dapat di artikan bahwa sesuatu itu dapat dikatakan besaran jika dan hanya jika memenuhi 3 syarat, yaitu:

  1. dapat di ukur atau dihitung
  2. dapat dinyatakan dengan angka-angka atau mempunyai nilai
  3. mempunyai satuan

Besaran di fisika dapat dibagi menjadi 2, yaitu:

  1. besaran pokok
  2. besaran turunan


BESARAN
POKOK

Besaran pokok adalah besaran yang satuannya didefinisikan terlebih dahulu dan tidak dapat dijabarkan dari besaran lain. Dapat juga diartikan sebagai besaran yang satuannya telah ditetapkan terlebih dahulu dan tidak diturunkan dari besaran lain. Besaran pokok yang paling umum ada 7 macam yaitu :

  1. Panjang ( l )
  2. Waktu ( t )
  3. Massa ( m )
  4. Arus listrik ( i )
  5. Suhu termodinamika ( T )
  6. Kuantitas zat ( n )
  7. Intensitas cahaya ( I )

besaran+pokok
BESARAN TURUNAN


Besaran turunan adalah besaran yang satuannya diturunkan dari 2 besaran pokok atau lebih atau besaran yang didapat dari penggabungan besaran-besaran pokok. Jumlah dari turunan ini takhingga sebab setiap susunan besaran dasar memberikan besaran turunan baru. Contoh besaran turunan adalah Berat, Luas, Volume, Kecepatan, Percepatan, Massa Jenis, Berat jenis, Gaya, Usaha, Daya, Tekanan, Energi Kinetik, Energi Potensial, Momentum, Impuls, Momen inersia, dll. Dalam fisika, selain tujuh besaran pokok yang disebutkan di atas, lainnya merupakan besaran turunan. Besaran Turunan selengkapnya akan dipelajari pada masing-masing pokok bahasan dalam pelajaran fisika.

besaran+turunan

DIMENSI BESARAN

Dimensi besaran fisis diwakili dengan simbol, misalnya M, L, T yang mewakili massa, panjang (mungkin dari istilah bahasa Inggris: length), dan waktu (mungkin dari istilah bahasa Inggris: time). Sebagaimana terdapat satuan turunan yang diturunkan dari satuan dasar, terdapat dimensi dasar primer besaran fisis dan dimensi sekunder besaran yang diturunkan

dari dimensi dasar primer. Misalnya, dimensi besaran kecepatan adalah jarak/waktu (L/T) dan dimensi gaya adalah massa × jarak/waktu² atau ML/T2

Satuan dan dimensi suatu variabel fisika adalah dua hal berbeda. Satuan besaran fisis didefinisikan dengan perjanjian, berhubungan dengan standar tertentu (contohnya, besaran panjang dapat memiliki satuan meter, kaki, inci, mil, atau mikrometer), namun dimensi besaran panjang hanya satu, yaitu L. Dua satuan yang berbeda dapat dikonversikan satu sama lain (contohnya: 1 m = 39,37 in; angka 39,37 ini disebut sebagai faktor konversi), sementara tidak ada faktor konversi antarlambang dimensi.

Berikut ini adalah tabel dari dimensi dan satuan dari tujuh besaran pokok :

dimensi-besaran-a1

Contoh soal :

  1. Tentukan dimensi besaran dari volum
  2. Tentukan dimensi besaran dari massa jenis

Penyelesaian :

  1. Persamaan Volum adalah hasil kali panjang, lebar dan tinggi di mana ketiganya memiliki dimensi panjang, yakni [L]. Dengan demikian, Dimensi Volum:dimensi-besaran-c
  2. Persamaan Massa Jenis adalah hasil bagi massa dan volum. Massa memiliki dimensi [M] dan volum memiliki dimensi [L]3. Dengan demikian Dimensi massa jenis :dimensi-besaran-b

BESARAN VEKTOR

Besaran fisika, selain dapat dibedakan menjadi besaran dasar dan besaran turunan, dapat pula dikelompokkan berdasarkan nilai (besar) dan arahnya. Atas dasar itu besaran fisika dapat dibedakan menjadi besaran skalar dan besaran vektor. Besaran skalar hanya memiliki nilai saja, sementara besaran vektor memiliki nilai dan arah.


Aturan penulisan vektor :

vektor-2

Operasi pada Besaran Vektor

Operasi vektor juga berlaku pada semua besaran vektor dengan syarat tertentu. Sifat operasi yang terjadi pada besaran vektor berupa operasi jumlah (+), selisih (-), perkalian skalar atau dot product (.), dan perkalian vektor atau cross product (x).



PENJUMLAHAN atau SELISIH 2 Vektor

Pada penjumlahan dan selisih vektor, terdapat 3 metode dalam penggambarannya, yaitu :

  1. Metode Segitiga
  2. Metode Poligon
  3. Metode Jajaran genjang

Dalam pembahasan kali ini, saya hanya akan membahas tentang metode segitiga.

Misalkan dua orang anak mendorong sebuah benda dengan vektor gaya masing-masing sebesar F1 dan F2, seperti ditunjukkan diagram di bawah. Ke arah mana benda itu akan pindah ? tentu saja benda tersebut tidak berpindah searah F1 atau F2. dalam kasus seperti itu, maka benda tersebut berpindah searah dengan F1 + F2. Operasi ini disebut jumlah vektor.
vektor-3
Cara menggambar jumlah dua buah vektor adalah dengan metode segitiga. Pertama, gambar vektor F1 berupa tanda panah. kedua, gambar vektor kedua, F2, dengan pangkalnya berhimpitan dengan ujung vektor pertama, F1. ketiga, jumlahkan kedua vektor, dengan menggambar vektor resultan (F1 + F2), dari pangkal vektor F1 menuju ujung vektor F2. Proses ini ditunjukkan pada gambar di bawah ini.

vektor-4
Cara menggambar selisih vektor pada dasarnya sama dengan menggambar penjumlahan dua vektor. Sebagai contoh, sebuah vektor F1 dan vektor F2 nilainya seperti tampak pada diagram di bawah. Berapa selisih kedua vektor tersebut ? misalnya F3 adalah selisih vektor F1 dan F2, maka dapat kita tulis F3 = F1 - F2 atau F3 = F1 + (-F2). Hal ini menunjukkan bahwa selisih antara vektor F1 dan F2 sama saja dengan penjumlahan vektor F1 dan vektor -F2. tanda minus hanya menunjukkan bahwa arah -F2 berlawanan dengan F2.
vektor-5
Pertama, gambar terlebih dahulu tanda panah yang melambangkan vektor F1. kedua, gambar vektor -F2. vektor -F2 besarnya sama dengan F2, hanya arahnya berlawanan. (Lihat dan bandingkan gambar di bawah dan di atas). Ketiga, gambar tanda panah vektor resultan F3, di mana pangkal vektor F3 berimpit dengan pangkal vektor F1 dan ujung vektor F3 berimpit dengan ujung vektor -F2.

vektor-6


PERKALIAN SKALAR ( dot product )

Misalnya diketahui vektor A dan B sebagaimana tampak pada gambar di bawah. Perkalian titik antara vektor A dan B dituliskan sebagai A.B (A titik B).

vektor-40
Untuk mendefinisikan perkalian titik dari vektor A dan B (A.B), digambarkan vektor A dan vektor B yang membentuk sudut teta (sambil lihat gambar di bawah). Selanjutnya kita gambarkan proyeksi dari vektor B terhadap arah vektor A. Proyeksi ini adalah komponen dari vektor B yang sejajar dengan vektor A, yang besarnya sama dengan B cos teta.

vektor-41
Dengan demikian, kita definisikan A.B sebagai besar vektor A yang dikalikan dengan komponen vektor B yang sejajar dengan A. Secara matematis dapat kita tulis sebagai berikut :
vektor-42

AB cos teta merupakan bilangan biasa (skalar). Karenanya perkalian titik disebut juga perkalian skalar. Bagaimana jika perkalian titik antara vektor A dan B dibalik menjadi B.A ? sebelum kita definisikan B.A, terlebih dahulu kita gambarkan proyeksi dari vektor A terhadap vektor B (lihat gambar di bawah).

vektor-43

Berdasarkan gambar ini, kita dapat mendefinisikan B.A sebagai besar vektor B yang dikalikan dengan komponen vektor A yang sejajar dengan B. Secara matematis dapat kita tulis sebagai berikut :

vektor-44


PERKALIAN VEKTOR ( cross product )

Perkalian silang dari dua vektor, misalnya vektor A dan B ditulis sebagai A x B (A silang B). Perkalian silang dikenal dengan julukan perkalian vektor, karena hasil perkalian ini menghasilkan besaran vektor.

Misalnya vektor A dan vektor B tampak seperti gambar di bawah.

vektor-49
Untuk mendefinisikan perkalian silang antara vektor A dan B (A x B), kita gambarkan vektor A dan B seperti gambar di atas, dan digambarkan juga komponen vektor B yang tegak lurus pada A (lihat gambar di bawah), yang besarnya sama dengan B sin teta
vektor-50
Dengan demikian, kita dapat mendefinisikan besar perkalian silang vektor A dan B (A x B) sebagai hasil kali besar vektor A dengan komponen vektor B yang tegak lurus pada vektor A.
vektor-51

Bagaimana jika perkalian silang antara vektor A dan B (A x B) kita balik menjadi B x A ?

Terlebih dahulu kita gambarkan vektor B dan A serta komponen vektor A yang tegak lurus pada B (amati gambar di bawah…)

vektor-52

Berdasarkan gambar ini, kita dapat mendefinisikan perkalian silang antara vektor B dan A (B x A) sebagai hasil kali besar vektor B dengan komponen vektor A yang tegak lurus pada vektor B. Secara matematis ditulis :

vektor-53


BAB II

GERAK

(MOVE)

DINAMIKA

Dalam kehidupan sehari-hari, kita menemukan banyak benda yang melakukan gerak, sebagaimana yang telah kita pelajari pada pokok bahasan Kinematika. Nah, mengapa benda-benda tersebut melakukan gerakan ? apa yang membuat benda-benda tersebut yang pada mulanya diam mulai bergerak ? apa yang mempercepat gerakan benda atau memperlambat gerakan benda ? faktor-faktor apa saja yang terlibat dalam setiap gerakan benda ?


Bagaimana mungkin sebuah perahu mendorong sebuah kapal yang lebih berat darinya ? mengapa diperlukan jarak yang jauh untuk mengentikan mobil massanya sangat besar ketika mobil tersebut bergerak ? mengapa kaki kita terasa lebih sakit ketika menendang sebuah batu besar dibandingkan dengan ketika kita menendang sebuah batu kerikil ? mengapa lebih sulit mengendalikan mobil di atas jalan yang licin ?

Anda bingung dan kesulitan dalam menjawab pertanyaan-pertanyaan di atas ?

Jawaban dari pertanyaan di atas dan pertanyaan serupa akan membawa kita pada masalah Dinamika, yakni hubungan antara gerak dan gaya yang menyebabkannya. Pada pokok bahasan kinematika, kita telah belajar mengenai gerak benda. Dalam pokok bahasan ini kita mempelajari tentang penyebab gerak benda.

Pada pokok bahasan Dinamika, kita menggunakan besaran kinematika seperti jarak/ perpindahan, kecepatan dan percepatan yang dihubungkan dengan dua konsep baru, yaitu gaya dan massa. Prinsip ini dikemas dalam tiga hukum Newton yang akan kita pelajari nanti. Hukum pertama menyatakan bahwa jika gaya total pada sebuah benda sama dengan nol, maka gerak benda tidak berubah. Hukum kedua meyatakan hubungan antara gaya dan percepatan ketika gaya gaya total tidak sama dengan nol. Hukum ketiga menyatakan hubungan antara gaya-gaya yang bekerja antara dua benda yang berinteraksi. Hukum Newton tidak berlaku secara umum, namun masih membutuhkan modifikasi untuk benda yang bergerak dengan kecepatan sangat tinggi (mendekati kecepatan cahaya) dan untuk benda dengan ukuran sangat kecil (seperti atom).

Hukum tentang gerak pertama kali dinyatakan oleh Sir Isaac Newton, yang dipublish pada tahun 1687 dalam bukunya Philosophiae Naturalis Principia Mathematica (”mathematical Principles of Natural Philosophy”). Hukum tersebut dikembangkan Newton berkat sumbangan ilmuwan lain dalam menetapkan dasar ilmu mekanika, di antaranya adalah Copernicus, Ticho Brahe, Kepler dan khususnya Galileo Galilei, yang meninggal pada tahun yang sama dengan kelahiran Newton.

Gerak Lurus Beraturan (GLB)

Gerak lurus beraturan diartikan sebagai gerakan pada lintasan lurus dengan kecepatan tetap/konstan. Kecepatan tetap berarti percepatan nol. Dengan kata lain benda yang bergerak lurus beraturan tidak memiliki percepatan. Dalam kehidupan sehari-hari sangat jarang ditemukan benda-benda yang bergerak pada lintasan lurus dengan kecepatan tetap. Karena pada Gerak Lurus Beraturan (GLB) kecepatan gerak suatu benda tetap, maka kecepatan rata-rata sama dengan kecepatan atau kelajuan sesaat. kok bisa ya ? ingat bahwa setiap saat kecepatan gerak benda tetap, baik kecepatan awal mapun kecepatan akhir. Karena kecepatan benda sama setiap saat, maka kecepatan awal juga sama dengan kecepatan akhir. Dengan demikian kecepatan rata-rata benda juga sama dengan kecepatan sesaat.

gerak-lurus-beraturan-a1

GRAFIK GERAK LURUS BERATURAN (GLB)

Grafik sangat membantu kita dalam menafsirkan suatu hal dengan mudah dan cepat. Untuk memudahkan kita menemukan hubungan antara Kecepatan, perpindahan dan waktu tempuh maka akan sangat membantu jika digambarkan grafik hubungan ketiga komponen tersebut.

Grafik Kecepatan terhadap Waktu (v-t)

gerak-lurus-beraturan-b

Berdasarkan grafik di atas, tampak bahwa kecepatan bernilai tetap pada tiap satuan waktu. Kecepatan tetap ditandai oleh garis lurus, berawal dari t = 0 hingga t akhir.

Contoh : perhatikan grafik kecepatan terhadap waktu (v-t) di bawah inigerak-lurus-beraturan-c

cepatan gerak benda pada grafik di atas adalah 3 m/s. 1, 2, 3 dstnya adalah waktu tempuh (satuannya detik). Amati bahwa walaupun waktu berubah dari 1 detik sampai 5, kecepatan benda selalu sama (ditandai oleh garis lurus).

Bagaimana kita mengetahui perpindahan benda melalui grafik di atas ? luas daerah yang diarsir pada grafik di atas sama dengan perpindahan benda. Jadi, untuk mengetahui besarnya perpindahan, hitung saja luas daerah yang diarsir. Tentu saja satuan perpindahan adalah satuan panjang, bukan satuan luas.

Dari grafik di atas, v = 5 m/s, sedangkan t = 3 s. Dengan demikian, jarak yang ditempuh benda = (5 m/s x 3 s) = 15 m. Cara lain menghitung jarak tempuh adalah dengan menggunakan persamaan GLB. s = v t = 5 m/s x 3 s = 15 m.

Persamaan GLB yang kita gunakan untuk menghitung jarak atau perpindahan di atas berlaku jika gerak benda memenuhi grafik tersebut. Pada grafik terlihat bahwa pada saat t = 0 s, maka v = 0. Artinya, pada mulanya benda diam, baru kemudian bergerak dengan kecepatan 5 m/s. Padahal dapat saja terjadi bahwa saat awal kita amati benda sudah dalam keadaan bergerak, sehingga benda telah memiliki posisi awal s0. Untuk itu lebih memahami hal ini, pelajari grafik di bawah ini.

Grafik Kedudukan terhadap Waktu (x-t)

Grafik kedudukan terhadap waktu, di mana kedudukan awal x0 berhimpit dengan titik acuan nol.

gerak-lurus-beraturan-d

Makna grafik di atas adalah bahwa nilai kecepatan selalu tetap pada setiap titik lintasan (diwakili oleh titik-titik sepanjang garis x pada sumbu y) dan setiap satuan waktu (diwakili setiap titik sepanjang t pada sumbu x). Anda jangan bingung dengan kemiringan garis yang mewakili kecepatan. Makin besar nilai x, makin besar juga nilai t sehingga hasil perbandingan x dan y (kecepatan) selalu sama.

Contoh : Perhatikan contoh Grafik Kedudukan terhadap Waktu (x-t) di bawah inigerak-lurus-beraturan-e

Bagaimanakah cara membaca grafik ini ?

Pada saat t = 0 s, jarak yang ditempuh oleh benda x = 0, pada saat t = 1 s, jarak yang ditempuh oleh benda = 2 m, pada saat t = 2 s jarak yang ditempuh oleh benda = 4 m, pada saat t = 3 s, jarak yang ditempuh oleh benda = 6 s dan seterusnya. Berdasarkan hal ini dapat kita simpulkan bahwa gerak benda yang diwakili oleh grafik x- t di atas, bergerak dengan kecepatan tetap 2 m/s (Ingat, kecepatan adalah jarak dibagi waktu).

Grafik kedudukan terhadap waktu, di mana kedudukan awal x0 tidak berhimpit dengan titik acuan nol.

gerak-lurus-beraturan-f

gerak-lurus-beraturan-g

Persamaan yang kita turunkan di atas menjelaskan hubungan antara kedudukan suatu benda terhadap fungsi waktu, di mana kedudukan awal benda tidak berada pada titik acuan nol. Kecepatan benda diawali dari kedudukan di x0 sehingga besar x0 harus ditambahkan dalam perhitungan. Pada grafik di atas xo = 0.

(pahami secara perlahan-lahan penurunan rumus di atas, bila perlu sambil melihat grafik untuk mempermudah pemahaman anda)

Percepatan

Setiap benda yang kecepatannya berubah dikatakan mengalami percepatan. Misalnya sebuah mobil atau sepeda motor (sedang bergerak ke arah tertentu) yang kecepatannya berubah dari 0 sampai 70 km/jam berarti dipercepat. Apabila suatu mobil/sepeda motor mengalami perubahan kecepatan seperti ini dalam waktu yang lebih singkat/lebih cepat dari mobil/sepeda motor yang lain, maka dikatakan bahwa mobil tersebut mendapat percepatan yang lebih besar. Jadi percepatan menyatakan seberapa cepat kecepatan sebuah benda berubah.

Percepatan Rata-Rata

Percepatan rata-rata diartikan sebagai perubahan kecepatan dibagi waktu yang diperlukan untuk perubahan tersebut.
kelajuan-kecepatan-percepatan-14
Percepatan merupakan besaran vektor, tetapi untuk gerakan satu dimensi, kita hanya perlu menggunakan tanda + dan - untuk menunjukan arah terhadap sistem koordinat yang dipakai.

Percepatan Sesaat

Percepatan sesaat, a, dapat didefinisikan dengan analogi/perbandingan terhadap kecepatan sesaat, untuk suatu saat tertentu.

kelajuan-kecepatan-percepatan-15

Contoh soal

Sebuah mobil mengalami percepatan sepanjang jalan lurus dari keadaan diam sampai kecepatan 75 km/jam dalam waktu 5 sekon. Hitunglah percepatan rata-ratanya.

Penyelesaian :

Mobil tersebut mulai dari keadaan diam, berarti v1 = 0. kecepatan akhirnya adalah v2 = 75 km/jam. percepatan rata-rata adalah

kelajuan-kecepatan-percepatan-16

Catatan : Jangan salah membedakan percepatan dengan kecepatan. Percepatan menyatakan seberapa cepat kecepatan berubah, sedangkan kecepatan menyatakan seberapa cepat posisi berubah.

Kecepatan Sesaat

Jika anda mengendarai mobil sepanjang jalan yang lurus sejauh 150 km dalam 2 jam, besar kecepatan rata-rata anda adalah 75 km/jam. walaupun demikian, tidak mungkin anda mengendarai mobil tersebut tepat 75 km/jam setiap saat. Untuk mengatasi hal ini, kita memerlukan konsep kecepatan sesaat, yang merupakan kecepatan pada suatu waktu. (kecepatan ini yang seharusnya ditunjukkan speedometer). Lebih tepatnya, kecepatan sesaat pada waktu kapanpun adalah kecepatan rata-rata selama selang waktu yang sangat kecil. Yaitu dimulai dengan

kelajuan-kecepatan-percepatan-11
Kita definisikan kecepatan sesaat sebagai kecepatan rata-rata pada limit delta t yang sangat kecil, mendekati nol. Kita dapat menuliskan definisi kecepatan sesaat, v, untuk gerak satu dimensi sebagai :
kelajuan-kecepatan-percepatan-12
kelajuan-kecepatan-percepatan-13
Jika sebuah benda bergerak dengan kecepatan tetap selama selang waktu tertentu, maka kecepatan sesaatnya pada tiap saat sama dengan kecepatan rata-ratanya. Tetapi pada umumnya hal ini tidak terjadi. Kondisi jalan yang macet, tikungan atau bahkan jalan yang rusak, berpapasan dengan kendaraan lain, atau menemui rintangan di jalan akan menyebabkan mobil/kendaraan bergerak kencang dan lambat secara bergantian.

Kecepatan Rata-Rata

Kecepatan rata-rata suatu benda yang bergerak didefinisikan sebagai perpindahan yang ditempuh benda dibagi waktu tempuh.

kelajuan-kecepatan-percepatan-05

Contoh soal :

Misalnya anda mulai berjalan dari A ke B, C, D lalu kembali ke A, selama selang waktu 48 detik (lihat gambar di bawah). Berapa kecepatan rata-rata anda ?

kelajuan-kecepatan-percepatan-06

Panduan Jawaban :

Sebelum kita menghitung kecepatan rata-rata, terlebih dahulu dihitung besarnya perpindahan. Perpindahan merupakan besaran vektor, demikian juga kecepatan, di mana gerakan benda bergantung pada arah.

Catatan :Benda-benda yag terletak di sebelah kanan titik asal (0) pada sumbu x memiliki koordinat x positif dan titik di sebelah kiri 0 memiliki koordinat x negatif. Posisi sepanjang sumbu y biasanya dianggap positif jika terletak di atas nol dan negatif bila terletak di bawah nol (ini hanya merupakan ketetapan). Ingat kembali pembahasan tentang kedudukan, jarak dan perpindahan.

Berdasarkan ketetapan ini, besar perpindahan = (+4 m) + ( +2 m) + (-4 m) + (-2 m ) = 4 m + 2 m - 4 m - 2 m = 0. Walaupun kamu melakukan gerakan, kedudukanmu tetap, jadi besar perpindahanmu pada contoh di atas adalah nol. Dengan kata lain, kamu tidak melakukan perpindahan. Karena besarnya perpindahan 0 maka kecepatan rata-rata = 0 (ingat bahwa setiap bilangan yang dibagi dengan nol hasilnya adalah nol)

Contoh soal untuk memperdalam pemahamanmu mengenai perbedaan kelajuan rata-rata dan kecepatan rata-rata.

Seseorang mengendarai sepeda motor 70 m ke timur dan kemudian berbalik ke barat sejauh 30 m, selama 70 detik. Berapa kelajuan rata-rata dan kecepatan rata-rata orang tersebut ?

Panduan jawaban :

Sebelum menghitung kelajuan rata-rata dan kecepatan rata-rata, terlebih dahulu diketahui besarnya jarak dan perpindahan. Pada cotoh soal di atas, jarak tempuh total = 100 m. sedangkan perpindahan = (+ 70 m) + (-30 m) = 70 m - 30 m = 40 m. Dengan demikian,

kelajuan-kecepatan-percepatan-07
Untuk membahas gerak satu dimensi sebuah benda pada umumnya, misalnya pada satu titik waktu, katakanlah t1, benda berada pada sumbu x di titik x1 pada sistem koordinat dan beberapa saat kemudian, pada waktu t2, berada pada titik x2. waktu yang diperlukan adalah t2-t1. dan selama selang waktu ini perpindahan benda adalah x2-x1. dengan demikian, kecepatan rata-rata percepatan rata-rata yang didefinisikan sebagai perpindahan dibagi waktu yang diperlukan, dapat ditulis :
kelajuan-kecepatan-percepatan-08

Di mana v adalah kecepatan dan garis di atas v adalah simbol estándar yang berarti rata-rata. Perhatikan bahwa jika x2 lebih kecil dari x1, benda bergerak ke kiri, berarti (x2-x1) lebih kecil dari nol. Tanda perpindahan dan berarti juga tanda kecepatan, menunjukkan arah : kecepatan rata-rata positif untuk benda yang bergerak ke kanan sepanjang sumbu x dan negatif jika benda bergerak ke kiri. Arah kecepatan selalu sama dengan arah perpindahan.

Contoh soal :

Posisi seorang pelari sebagai fungsi waktu digambarkan sepanjang sumbu x dari suatu sistem koordinat. Selama selang waktu 3 s, posisi pelari berubah dari x1 = 50 m menjadi x2 = 30,5 m, seperti tampak pada gambar di bawah. Berapakah kecepatan rata-rata pelari tersebut ?

kelajuan-kecepatan-percepatan-09

Panduan jawaban :

Kecepatan rata-rata adalah perpindahan dibagi waktu yang diperlukan. Perpindahannya adalah :

kelajuan-kecepatan-percepatan-10
Perpindahan dan kecepatan rata-rata bernilai negatif, yang menunjukan bahwa pelari tersebut bergerak ke kiri sepanjang sumbu x, sebagaimana ditunjukan oleh tanda panah. Dengan demikian kita dapat mengatakan bahwa kecepatan rata-rata pelari tersebut adalah 6,50 m/s ke kiri.

Kecepatan

Kecepatan merupakan besaran yang bergantung pada arah, sehingga termasuk besaran vektor. Dalam satu dimensi, arah gerakan selalu dinyatakan dengan tanda + atau -. Jika ditetapkan arah ke timur sebagai sumbu positif ( sumbu +x), maka besar/nilai kecepatan gerak benda ke arah timur cukup ditambahkan tanda + di depannya. Apabila ke arah barat, besar/nilai kecepatan gerak benda ditambah tanda - . Sebagai contoh, sebuah mobil bergerak 60 km/jam ke timur, maka dalam penulisannya cukup ditulis +60 km/jam. apabila mobil tersebut berbelok dan bergerak 60 km/jam ke arah barat, kecepatan mobil tersebut cukup ditulis -60 km/jam.

Jika alat ukur kelajuan adalah speedometer, apakah alat ukur kecepatan ? misalnya pada sebuah mobil yang memiliki speedometer jenis linier yang dilengkapi dengan pembacaan angka negatif apabila mobil bergerak mundur. Alat ini disebut velocitometer, yakni alat pengukur kecepatan.

Misalnya ketika mobil bergerak maju (misalnya ke arah utara) dengan kelajuan 60 km/jam, velocitometer akan menunjukkan angka +60. namun bila mobil bergerak mundur dengan kelajuan 60 km/jam, velocitometer akan menunjukkan angka -60. contoh ini menunjukkan bahwa kecepatan sesaat adalah kelajuan sesaat beserta arah geraknya.

Perlu diketahui bahwa yang dibahas di atas adalah besar kelajuan sesaat dan kecepatan sesaat. Kelajuan sesaat merupakan besaran skalar, yang diukur dengan speedometer. Sedangkan kecepatan sesaat adalah kelajuan sesaat beserta arah geraknya. Kecepatan sesaat termasuk besaran vektor yang diukur dengan velocitometer. Suatu benda yang bergerak selama selang waktu tertentu dan gerakannya tidak pernah berhenti, baik kelajuan sesaat maupun kecepatan sesaatnya tidak pernah bernilai nol. Kelajuan sesaat dan kecepatan sesaat hanya bernilai nol apabila benda berhenti sesaat.

Kelajuan

Pada pokok bahasan tentang Besaran Vektor dan Skalar, telah dijelaskan pengertian vektor dan skalar serta perbedaan antara keduanya. Jika anda belum memahami dengan baik dan benar, sebaiknya dipelajari terlebih dahulu.

Istilah laju/kelajuan menyatakan seberapa jauh sebuah benda berjalan/berpindah dalam suatu selang waktu tertentu. Kelajuan merupakan salah satu besaran turunan yang tidak bergantung pada arah, sehingga kelajuan termasuk skalar. Seperti jarak, kelajuan termasuk besaran skalar yang nilainya selalu positif. Alat pengukur kelajuan adalah speedometer, digunakan pada sepeda motor, mobil atau kendaraan lainnya. Anda pasti sering melihat alat tersebut

Kelajuan Rata-rata

Kelajuan/laju rata-rata suatu benda yang bergerak diartikan sebagai jarak total yang ditempuh sepanjang lintasan gerak benda dibagi waktu yang diperlukan untuk menempuh jarak yang tersebut.

kelajuan-kecepatan-percepatan-02

Ingat bahwa yang dikatakan pada definisi di atas adalah jarak, bukan perpindahan.

Contoh soal :

Misalnya anda mulai berjalan dari A ke B, C, D lalu kembali ke A, selama selang waktu 48 detik (lihat gambar di bawah). Berapa kelajuan rata-rata anda ?

kelajuan-kecepatan-percepatan-03
Penyelesaian :
Sebelum kita menghitung laju rata-rata, terlebih dahulu dihitung jarak tempuh total. Jarak tempuh total = Jarak AB + BC + CD + DA = 4 m + 2 m + 4 m + 2 m = 12 m. waktu tempuh total = 48 detik. Dengan demikian,
kelajuan-kecepatan-percepatan-04

Gerak Lurus Berubah Beraturan (GLBB)

Gerak lurus berubah beraturan (GLBB) diartikan sebagai gerak benda dalam lintasan lurus dengan percepatan tetap. Yang dimaksudkan dengan percepatan tetap adalah perubahan kecepatan gerak benda yang berlangsung secara tetap dari waktu ke waktu. Mula-mula dari keadaan diam, benda mulai bergerak, semakin lama semakin cepat dan kecepatan gerak benda tersebut berubah secara teratur. Perubahan kecepatan bisa berarti tejadi pertambahan kecepatan atau pengurangan kecepatan. Pengurangan kecepatan terjadi apabila benda akan berhenti. dalam hal ini benda mengalami perlambatan tetap. Pada pembahasan ini kita tidak menggunakan istilah perlambatan untuk benda yang mengalami pengurangan kecepatan secara teratur. Kita tetap menamakannya percepatan, hanya nilainya negatif. Jadi perlambatan sama dengan percepatan yang bernilai negatif.

Dalam kehidupan sehari-hari sangat sulit ditemukan benda yang melakukan gerak lurus berubah beraturan, di mana perubahan kecepatannya terjadi secara teratur, baik ketika hendak bergerak dari keadaan diam maupun ketika hendak berhenti. walaupun demikian, banyak situasi praktis terjadi ketika percepatan konstan/tetap atau mendekati konstan, yaitu jika percepatan tidak berubah terhadap waktu (ingat bahwa yang dimaksudkan di sini adalah percepatan tetap, bukan kecepatan tetap. Beda lho….).

Penurunan Rumus Gerak Lurus Berubah Beraturan (GLBB)

Rumus dalam fisika sangat membantu kita dalam menjelaskan konsep fisika secara singkat dan praktis. Jadi cobalah untuk mencintai rumus, he2…. Dalam fisika, anda tidak boleh menghafal rumus. Pahami saja konsepnya, maka anda akan mengetahui dan memahami cara penurunan rumus tersebut. Hafal rumus akan membuat kita cepat lupa dan sulit menyelesaikan soal yang bervariasi….

Sekarang kita coba menurunkan rumus-rumus dalam Gerak Lurus Berubah Beraturan (GLBB). Pahami perlahan-lahan ya….

Pada penjelasan di atas, telah disebutkan bahwa dalam GLBB, percepatan benda tetap atau konstan alias tidak berubah. (kalau di GLB, yang tetap adalah kecepatan). Nah, kalau percepatan benda tersebut tetap sejak awal benda tersebut bergerak, maka kita bisa mengatakan bahwa percepatan sesaat dan percepatan rata-ratanya sama. Bisa ya ? ingat bahwa percepatan benda tersebut tetap setiap saat, dengan demikian percepatan sesaatnya tetap. Percepatan rata-rata sama dengan percepatan sesaat karena baik percepatan awal maupun percepatan akhirnya sama, di mana selisih antara percepatan awal dan akhir sama dengan nol.

Jika sudah paham, sekarang kita mulai menurunkan rumus-rumus alias persamaan-persamaan.

Pada pembahasan mengenai percepatan, kita telah menurunkan persamaan/rumus percepatan rata-rata, di mana

gerak-lurus-beraturan-g

t0 adalah waktu awal ketika benda hendak bergerak, t adalah waktu akhir. Karena pada saat t0 benda belum bergerak maka kita bisa mengatakan t0 (waktu awal) = 0. Nah sekarang persamaan berubah menjadi:

gerak-lurus-berubah-beraturan-02

Satu masalah umum dalam GLBB adalah menentukan kecepatan sebuah benda pada waktu tertentu, jika diketahui percepatannya (sekali lagi ingat bahwa percepatan tetap). Untuk itu, persamaan percepatan yang kita turunkan di atas dapat digunakan untuk menyatakan persamaan yang menghubungkan kecepatan pada waktu tertentu (vt), kecepatan awal (v0) dan percepatan (a). sekarang kita obok2 persamaan di atas…. Jika dibalik akan menjadi:gerak-lurus-berubah-beraturan-03

ini adalah salah satu persamaan penting dalam GLBB, untuk menentukan kecepatan benda pada waktu tertentu apabila percepatannya diketahui. Jangan dihafal, pahami saja cara penurunannya dan rajin latihan soal biar semakin diingat….

Selanjutnya, mari kita kembangkan persamaan di atas (persamaan I GLBB) untuk mencari persamaan yang digunakan untuk menghitung posisi benda setelah waktu t ketika benda tersebut mengalami percepatan tetap.

Pada pembahasan mengenai kecepatan, kita telah menurunkan persamaan kecepataan rata-rata :

gerak-lurus-berubah-beraturan-04

Karena pada GLBB kecepatan rata-rata bertambah secara beraturan, maka kecepatan rata-rata akan berada di tengah-tengah antara kecepatan awal dan kecepatan akhir;gerak-lurus-berubah-beraturan-05

Persamaan ini berlaku untuk percepatan konstan dan tidak berlaku untuk gerak yang percepatannya tidak konstan. Kita tulis kembali persamaan a :

gerak-lurus-berubah-beraturan-06

Persamaan ini digunakan untuk menentukan posisi suatu benda yang bergerak dengan percepatan tetap. Jika benda mulai bergerak pada titik acuan = 0 (atau x0 = 0), maka persamaan II dapat ditulis menjadi
gerak-lurus-berubah-beraturan-07
Sekarang kita turunkan persamaan/rumus yang dapat digunakan apabila t (waktu) tidak diketahui.

gerak-lurus-berubah-beraturan-08

Sekarang kita subtitusikan persamaan ini dengan nilai t pada persamaan c

gerak-lurus-berubah-beraturan-09

Terdapat empat persamaan yang menghubungkan posisi, kecepatan, percepatan dan waktu, jika percepatan (a) konstan, antara lain :

gerak-lurus-berubah-beraturan-101

Persamaan di atas tidak berlaku jika percepatan tidak konstan/tetap. Ingat bahwa x menyatakan posisi/kedudukan, bukan jarak dan ( x - x0 ) adalah perpindahan (s)

KINEMATIKA

Kinematika merupakan cabang mekanika yang membahas gerak benda. Gerak benda dibahas tanpa memperhatikan penyebabnya. Adapun cabang mekanika yang mempelajari gerak beserta penyebab gerak benda (berupa gaya dan torka) disebut dinamika. Sebuah benda disebut berkeadaan stasioner bila benda itu dalam keadaan diam atau melakukan gerak lurus beraturan (GLB). Keadaan benda dapat berubah dari keadaan stasioner ke keadaan lain bila mengalami pengaruh dari luar, yaitu gaya. Jadi gaya merupakan peubah gerak atau penyebab gerak translasi benda. Adapun peubah gerak rotasi benda disebut torka atau torsi atau juga momen gaya. Kinematika membahas gerak benda, baik dalam hal keadaan gerak maupun kuantitas (besarnya) gerak benda tanpa memperhatikan gaya atau torka sebagai peubah geraknya.

Ada beberapa penyebutan tentang keadaan khusus dari gerak benda :

  1. Benda diam, berarti posisi benda tetap atau posisi benda tidak bergantung waktu sehingga kecepatannya adalah nol.
  2. Benda bergerak, bila posisi benda berubah terhadap waktu.
  3. Gerak lurus beraturan (GLB), berarti benda bergerak pada kecepatan tetap sehingga percepatan yang dialami benda adalah nol.
  4. Gerak lurus berubah beraturan (GLBB), bila benda bergerak pada percepatan tetap. GLBB merupakan gerak berarah lurus dan dalam keadaan dipercepat atau diperlambat. Dalam keadaan dipercepat bila percepatan positif dan dalam keadaan diperlambat bila percepatan negatif,



HUBUNGAN KECEPATAN DAN WAKTU

Diketahui grafik hubungan kecepatan dan waktu :
gambar-11

Hitunglah

a. Panjang lintasan 5 detik pertama

b. Percepatan dari detik 0 sampai detik 1

c. Percepatan dari detik 4 sampai detik 5

Penyelesaian:

a. Panjang lintasan 5 detik pertama

Detik 0 - 1 :

gambar-fisdas-211

= ½ (1) (80 + 40)

= ½ (120)

= 60 m

Detik 1 - 4 :

gambar-fisdas-212

= ½ (3) (80 + 80)

= 3/2 (160)

= 240 m

Detik 4 - 5 :

gambar-fisdas-213

= ½ (1) (80 + 20)

= ½ (100)

= 50 m

Jadi, panjang lintasan = 60 + 240 + 50 = 350 m

b. Percepatan dari detik 0 sampai detik 1

gambar-fisdas-21

c. Percepatan dari detik 4 sampai detik 5
gambar-fisdas-3

MOBIL BERTEMU 1

Dua mobil bergerak dari arah yang berlawanan seperti gambar di bawah ini. Mobil A bergerak dengan vA dan aA ke kanan, dan mobil B bergerak dengan vB dan aB ke kiri. Hitunglah t saat mereka bertemu :

mobil-1

Jawaban :

mobil-2

mobil-3



MOBIL BERTEMU 2

Dua buah mobil bergerak ke arah yang sama seperti gambar di bawah ini. Mobil A bergerak dengan vA dan aA ke kanan di belakang mobil B yang bergerak dengan vB dan aB. Hitunglah t saat mereka bertemu.

mobil-4
Jawaban :

mobil-5

mobil-6


BAB III

HUKUM NEWTON TENTANG GERAK

A. Massa, Berat-Gaya Gravitasi dan Gaya Normal

Pengantar

Dalam kehidupan sehari-hari kita sering menggunakan istilah massa dan berat. Ketika mengukur badan kita dengan timbangan, kita selalu menyatakannya dengan berat. Jika ditinjau dari ilmu fisika, yang kita maksudkan sebenarnya massa, bukan berat. Pengertian massa dan berat yang kita gunakan dalam kehidupan sehari-hari sangat berbeda maknanya dalam ilmu fisika. Pada kesempatan ini kita akan belajar tentang massa dan berat. Pembahasan ini diselipkan di awal pembahasan hukum Newton, karena Hukum Newton selalu menggunakan konsep massa dan berat. Oleh karena itu sangat disarankan agar anda mempelajari pembahasan ini terlebih dahulu sebelum mempelajari Hukum Newton. Akhirnya, gurumuda mengucapkan selamat belajar… Semoga setelah mempelajari topik ini anda dapat membedakan pengertian massa dan berat dengan baik dan benar, sehingga membantu anda memahami Hukum Newton dengan mudah.

PENGERTIAN MASSA

Apa yang anda ketahui tentang massa ?

Hukum Newton yang akan kita pelajari nanti menggunakan konsep massa. Eyang Newton menggunakan konsep massa sebagai sinonim jumlah zat. Pandangan mengenai massa benda seperti ini tidak terlalu tepat karena ?jumlah zat’ tidak terdefinisi dengan baik. Dengan kata lain tidak ada cara praktis untuk menghitung partikel-partkel tersebut. Lebih tepatnya, massa merupakan ukuran inersia/kelembaman suatu benda (kemampuan mempertahankan keadaan suatu gerak). Makin besar massa suatu benda, makin sulit mengubah keadaan gerak benda tersebut. Semakin besar massa benda, semakin sulit menggerakannya dari keadaan diam, atau menghentikannya ketika sedang bergerak atau merubah gerakannya keluar dari lintasannya yang lurus. Kita dapat mengatakan bahwa semakin besar massa benda, semakin besar hambatan benda tersebut untuk dipercepat. Konsep ini dengan mudah dapat kita kaitkan dengan kehidupan sehari-hari. Jika kita memukul bola tenis meja dan bola basket dengan gaya yang sama maka tentu saja bola basket akan bergerak lebih lambat/bola basket memiliki percepatan yang lebih kecil dibandingkan denga bola tenis. Demikian juga sebuah truk gandeng yang sedang bergerak lebih sulit dihentikan dibandingkan dengan sebuah taxi. Jika sebuah gaya menghasilkan percepatan yang besar, maka massa benda kecil; jika gaya yang sama menyebabkan percepatan kecil, maka massa benda besar.

Satuan Sistem Internasional untuk massa adalah Kilogram (kg). Lambang massa adalah m, yang merupakan inisial dari kata mass (kata massa dalam bahasa inggris). Lambang ini merupakan ketetapan yang dibuat untuk penyeragaman. Bayangkanlah seandainya setelah menamatkan SMA di Indonesia dan anda melanjutkan belajar pada perguruan tinggi di luar negeri maka anda harus menyesuaikan lagi ilmu fisika yang pernah dipelajari di Indonesia, seandainya kita menggunakan lambang lain. Massa merupakan besaran skalar, yakni besaran yang hanya mempunyai nilai/besar saja.

PENGERTIAN BERAT

Dalam kehidupan sehari-hari kita sering menggunakan istilah massa dan berat secara keliru. Oleh karena itu kita perlu membedakan pengertian massa dan berat secara benar. Massa adalah sifat dari benda itu sendiri, yakni ukuran kelembaman benda tersebut atau “jumlah zat’-nya. Sedangkan berat adalah gaya, gaya gravitasi yang bekerja pada sebuah benda. Untuk melihat perbedaannya, misalnya kita membawa sebuah benda ke bulan. Jika kita tidak akan pernah ke bulan, benda tersebut kita titipkan saja lewat para astronout ketika berada di bulan, berat benda tersebut hanya seperenam dari beratnya di bumi karena gaya gravitasi di bulan enam kali lebih kecil dibandingkan dengan gaya gravitasi di bumi. Tetapi massa benda tersebut tetap sama. Benda tersebut tetap memiliki jumlah zat yang sama dan inersia alias kelembamannya juga sama. Sebuah batu ketika dibawa ke bulan, tetap menjadi batu dengan ukuran yang sama. Yang berbeda adalah berat-nya alias gaya gravitasi yang bekerja pada batu tersebut.

Secara matematis, berat di tulis sebagai berikut :

w = m g

w adalah inisial dari weight (kata berat dalam bahasa Inggris). m adalah lambang massa dan g adalah lambang gaya gravitasi. Jadi secara matematis, w adalah hasil kali antara massa dan gravitasi. massa adalah besaran skalar, sedangkan gravitasi adalah besaran vektor. Perkalian antara skalar (massa) dengan vektor (gravitasi), menghasilkan besaran vektor (Berat). Jika anda kebingungan, silahkan pelajari kembali pembahasan mengenai perkalian antara besaran vektor dan skalar. Dengan demikian Berat termasuk besaran vektor (besaran vektor adalah besaran yang memiliki besar dan arah). Arah Berat sama dengan arah gravitasi, yakni menuju ke pusat bumi alias tegak lurus ke bawah (permukaan tanah).

Vektor berat benda selalu digambarkan berarah tegak lurus ke bawah, di manapun posisi benda diletakan, baik pada bidang horisontal, bidang miring, atau pada bidang tegak. Perhatikan gambar di bawah.

Satuan Berat adalah kg m/s2. Dari manakah asal satuan ini ? tolong ingat kembali pelajaran mengenai dimensi besaran. Itu fungsinya kita belajar dimensi (besaran dan satuan) di awal pelajaran fisika. Nama lain satuan Berat adalah Newton. Newton adalah satuan Gaya, dengan demikian secara matematis kita sudah menunjukan bahwa Berat juga termasuk Gaya.

Latihan Soal 1 :

Berapakah massa dirimu seandainya berat dirimu 400 Newton ? anggap saja gravitasi bernilai 10 m/s2

Latihan Soal 2 :

Massa Gurumuda di bumi adalah 50 kg. Berapa berat Gurumuda di bulan seandainya Gurumuda jalan-jalan ke bulan ? anggap saja percepatan gravitasi di bumi 10 m/s2 dan gravitasi di bulan seperenam gravitasi di bumi.

GRAVITASI

Percepatan gravitasi di permukaan bumi secara rata-rata bernilai 9,8 m/s2. kenyataannya, nilai gravitasi (g) sedikit berubah dari satu titik ke titik lain di permukaan bumi, dari kira-kira 9, 78 m/s2 sampai 9,82 m/s2. beberapa faktor yang mempengaruhi hal tersebut antara lain : pertama, bumi kita tidak benar-benar bulat, percepatan gravitasi bergantung pada jaraknya dari pusat bumi (planet); kedua, percepatan gravitasi tergantung dari jaraknya terhadap permukaan bumi. Semakin tinggi sebuah benda dari permukaan bumi, semakin kecil percepatan gravitasi; ketiga, percepatan gravitasi bergantung pada planet tempat benda berada, di mana setiap planet, satelit atau benda angkasa lainnya memiliki gravitasi yang berbeda.

Mengapa Gravitasi di permukaan bumi berbeda-beda ? mengapa percepatan gravitasi di setiap planet berbeda ? untuk mengetahui hal ini, anda perlu mengetahui apa sebenarnya gravitasi atau apa yang membuat bumi dan benda angkasa lainnya, termasuk bulan memiliki gravitasi. Mengenai hal ini selengkapnya akan kita pelajari pada pokok bahasan teori relativitas umum eyang Einstein. Pada kesempatan ini Gurumuda ingin menjawab rasa penasaran anda, seandainya anda ingin mengetahui apa itu gravitasi sesungguhnya sehingga setiap benda selalu jatuh ke permukaan bumi.

Untuk memudahkan pemahaman anda mengenai gravitasi, bayangkanlah anda dan teman dekat atau pacar anda yang cantik+ merentangkan sebuah kain (sebaiknya kain tersebut terbuat dari karet). Sekarang, letakan sebuah benda, dari ukuran terkecil hingga ukuran besar di atas kain atau lembaran karet tersebut. Apa yang anda amati ? jika yang anda letakan adalah sebuah kelereng, maka lekukan yang terbentuk kecil, tetapi jika anda meletakan sebongkah batu yang berukuran besar maka lekukan pada kain atau lembaran karet tersebut sangat besar. nah, sekarang, letakan sebuah kerikil atau batu kecil pada pinggir kain tersebut. Apa yang anda amati ? kerikil atau batu kecil tersebut akan terperosok alias jatuh menuju pusat lekukan, di mana batu besar yang anda letakan pada kain berada. Setiap benda angkasa yang bermassa (termasuk bumi) selalu membuat lekukan dalam ruang waktu. hal ini yang menyebabkan setiap benda seolah-olah ditarik bumi atau benda angkasa lainnya. Sebenarnya ini disebabkan oleh efek lekukan, sebagaimana ilustrasi kain karet dan batu di atas. Selengkapnya anda pelajari pada pembahasan mengenai Teori Relativitas Umum (kelas XII).

Pada pembahasan mengenai Gerak Jatuh Bebas, kita telah belajar bahwa benda-benda yang dijatuhkan dekat permukaan bumi akan jatuh dengan percepatan yang sama, g (percepatan gravitasi), seandainya hambatan udara diabaikan. Gaya yang menyebabkan percepatan ini disebut gaya gravitasi. Gaya gravitasi bekerja pada sebuah benda ketika benda tersebut jatuh.

Kita terapkan hukum II Newton untuk gaya gravitasi dan untuk percepatan a, kita ganti dengan percepatan gravitasi (g). ingat kembali pelajaran Gerak Jatuh Bebas. Benda yang jatuh hanya dipengaruhi oleh percepatan gravitasi. Dengan demikian Gaya Gravitasi yang pada sebuah benda, FG, yang besarnya disebut berat, dapat ditulis sebagai :

FG = mg

Arah gaya ini ke bawah, menuju ke pusat bumi. Persamaan ini sama dengan w = mg, seperti yang sudah kita pelajari di atas, karena berat adalah gaya gravitasi yang bekerja pada sebuah benda.

Ketika benda berada dalam keadaan diam di permukaan bumi, gaya gravitasi yang ada pada benda tersebut tidak hilang. Untuk membuktikaan hal ini, kita bisa mengukur benda tersebut dengan neraca pegas dan membandingkannya dengan hasil perhitungan kita (FG = m g atau w = mg). Lalu mengapa benda tidak bergerak ? Dari hukum II Newton, gaya total untuk benda yang diam adalah nol. Jika demikian, pasti ada gaya lain yang bekerja pada benda tersebut, untuk mengimbangi gaya gravitasi. Gaya apakah itu ?

GAYA NORMAL

Ketika kita meletakan sebuah kotak di atas meja, berat kotak tersebut menekan meja ke bawah dan sebaliknya meja membalas dengan memberikan gaya ke atas (lihat gambar di bawah). Gaya yang diberikan oleh meja bisa disebut gaya kontak, karena gaya tersebut terjadi karena adanya sentuhan antara kotak dan meja. Sebuah gaya kontak yang tegak lurus terhadap permukaan kontak disebut Gaya Normal (normal berarti tegak lurus), dan mempunyai Lambang FN atau bisa ditulis N.

4

Kedua gaya yang ditunjukkan pada gambar diatas bekerja pada kotak sehingga kotak tetap diam. Selisih kedua gaya tersebut (gaya total) pasti nol, sehinga kotak tersebut diam/tidak jatuh ke tanah. FG atau w dan N pasti memiliki besar yang sama dan memiliki arah yang berlawanan, sehingga gaya total atau selisih kedua gaya tersebut nol. Gaya-gaya tersebut bukan gaya aksi reaksi yang dijelaskan pada Hukum III Newton. Ingat bahwa gaya aksi reaksi bekerja pada benda yang berbeda, sedangkan kedua gaya di atas (Gaya berat dan Gaya Normal) bekerja pada benda yang sama, yakni kotak. Perhatikan gambar di atas secara saksama. Gaya berat benda yang menekan meja digambarkan pada titik pusat kotak alias berada di tengah-tengah kotak. Sedangkan Gaya Normal digambarkan pada permukaan sentuh antara kotak dan meja.

Lalu apa gaya reaksinya ? gaya ke atas yang diberikan oleh meja terhadap kotak adalah N, disebut gaya aksi. Gaya reaksi diberikan oleh kotak kepada meja, yakni N’, sebagaimana diperlihatkan pada gambar di bawah. Perhatikan baik-baik posisi tanda panah pada gambar. Tanda panah yang mewakili N’ digambarkan pada meja, bukan pada kotak. Panjang tanda panah sama, hal ini menunjukkan bahwa besarnya gaya sama, hanya berlawanan arah (aksi = - reaksi). Mengenai aksi-reaksi selengkapnya dipelajari pada Pokok Bahasan Hukum III Newton.

1c

Gaya Normal (N) bekerja pada bidang sentuh antara dua benda yang saling bersentuhan dan arahnya selalu tegak lurus pada bidang sentuh. Beberapa contoh arah Gaya Normal terhadap gaya sentuh ditunjukkan pada gambar di bawah.

1d

Gaya

Anda pasti sering mendengar atau bahkan selalu menggunaka kata ini (gaya) dalam kehidupan sehari-hari. Arti kata Gaya dalam kehidupan sehari-hari agak berbeda dengan pengertian gaya dalam ilmu fisika.

Pernahkah anda mendorong motor atau mobil yang mogok ? ketika mendorong motor atau mobil tersebut, anda memberikan gaya pada mobil atau motor tersebut. Akibat gaya yang anda berikan, mobil atau motor tersebut bergerak. Ketika kita menggunakan lift dari lantai dasar ke lantai empat, misalnya, lift tersebut melakukan gaya angkat terhadap kita sehingga kita bisa berpindah dari lantai satu ke lantai empat. Ketika angin meniup dedaunan sehingga membuatnya bergerak, ada sebuah gaya yang sedang diberikan. Sebuah meja akan bergerak jika anda mendorongnya, karena pada saat mendorong, anda memberikan gaya pada meja tersebut. Masih banyak contoh lain dalam kehidupan sehari-hari, anda dapat menyebutkannya satu-persatu….

Berdasarkan intuisi, kita menggambarkan gaya sebagai semacam dorongan atau tarikan terhadap suatu benda. Dorongan atau tarikan tersebut menyebabkan benda bergerak. Ketika mendorong motor sehingga motor tersebut bergerak, maka gaya yang bekerja pada motor tersebut diakibatkan oleh dorongan. Kita bisa mengatakan bahwa gaya yang diakibatkan oleh dorongan merupakan jenis gaya sentuh, karena terdapat kontak langsung antara benda dan sumber gaya. Bagaimana dengan tarikan ? ketika buah mangga yang lezat dan ranum jatuh dari pohon, sehingga membuat anda lari pontang-panting untuk mengambilnya, yang menjadi penyebab jatuhnya buah mangga tersebut adalah gaya gravitasi. Gaya gravitasi menyebabkan buah pepaya, jeruk dan kelapa bisa jatuh dari pohonnya. Gaya gravitasi juga yang menyebabkan semua benda atau manusia jatuh ke permukaan bumi. Perhatikan bahwa pada kasus jatuhnya buah mangga atau buah jeruk dari pohonnya tersebut tidak sama seperti ketika anda mendorong motor atau mobil hingga bergerak. Tidak ada kontak langsung atau sentuhan yang terjadi sehingga buah-buah kesayangan anda tersebut jatuh. Gaya seperti ini diakibatkan oleh tarikan, bukan dorongan dan termasuk gaya tak sentuh.

Apakah gaya selalu menyebabkan benda bergerak ? ayo dijawab, salah gpp…..

Ketika mendorong tembok rumah anda, misalnya, walaupun anda sampai banjir keringat atau lemas tak berdaya sambil mengeluarkan air mata buaya, tembok tersebut tetap tidak akan bergerak. Apakah contoh itu tidak termasuk gaya ? ketika mendorong tembok, anda juga memberikan gaya pada tembok tersebut. Walaupun demikian, gaya anda sangat kecil sehingga tidak mampu merubuhkan tembok itu. Ini hanya salah satu contoh yang menunjukan bahwa tidak semua gaya dapat menghasilkan gerakan.

Bagaimana kita mengukur gaya ? satu cara yang digunakan untuk mengukur gaya adalah dengan menggunakan neraca pegas. Biasanya neraca itu digunakan untuk menimbang berat sebuah benda. Istilah berat dan massa akan kita kupas tuntas pada pembahasan tersendiri, tetapi masih dalam pokok bahasan Dinamika.

Ingat bahwa gaya adalah besaran vektor. Mengapa gaya digolongkan dalam besaran vektor ? ketika anda mendorong meja, misalnya, jika anda hanya mengatakan bahwa : “saya mendorong meja dengan gaya 50 N”, maka pernyataan ini masih membingungkan. Anda mendorong meja ke arah mana ? oleh karena itu anda juga harus menyebutkan arah gerak benda yang didorong. Jadi gaya termasuk besaran yang memiliki nilai dan arah. Karena gaya merupakan besaran vektor maka dalam menyatakan arahnya pada sebuah diagram, kita harus menggunakan aturan-aturan vektor.

B. Hukum Newton I

Kita telah mempelajari sifat-sifat gaya pada bagian pengantar pokok bahasan Dinamika, namun sejauh ini kita belum membahas bagaimana gaya berpengaruh terhadap gerak. Nah, bagaimana hubungan yang tepat antara Gaya dan Gerak ? Untuk mengawalinya, mari kita bayangkan apa yang terjadi ketika gaya total pada sebuah benda sama dengan nol atau dengan kata lain tidak ada gaya yang bekerja pada benda. Anda pasti akan setuju bahwa benda tersebut dalam keadaan diam, dan jika tidak ada gaya yang bekerja padanya, yaitu tidak ada tarikan atau dorongan, maka benda itu akan tetap diam. Nah, bagaimana jika terdapat gaya total nol yang bekerja pada benda yang sedang bergerak ?

Untuk memperjelas permasalahan ini, anggap saja anda sedang mendorong sekeping uang logam pada permukaan lantai kasar. Setelah anda berhenti mendorong, keping uang logam tersebut tidak akan terus bergerak, namun melambat kemudian berhenti. Untuk menjaganya agar tetap bergerak, kita harus tetap mendorong (memberikan gaya). Jika dicermati dengan saksama, anda akan menyimpulkan bahwa benda-benda yang bergerak secara alami akan berhenti dan sebuah gaya diperlukan agar untuk mempertahankannya agar tetap bergerak. Pada abad ketiga Sebelum Masehi, Aristoteles, seorang filsuf Yunani pernah menyatakan bahwa diperlukan sebuah gaya agar benda tetap bergerak pada bidang datar. Menurut eyang Aristoteles, keadaan alami dari sebuah benda adalah diam. Oleh karena itu perlu ada gaya untuk menjaga agar benda tetap bergerak. Ia juga mengatakan bahwa laju benda sebanding dengan besar gaya, di mana makin besar gaya, makin besar laju gerak benda tersebut.

Setelah 2000 tahun kemudian, Galileo Galilei mempersoalkan pandangan Aristoteles. Galileo mengatakan bahwa sama alaminya bagi sebuah benda untuk bergerak mendatar dengan kecepatan tetap, seperti ketika benda tersebut berada dalam keadaan diam. Untuk memahami pandangan galileo, bayangkan anda mendorong sekeping uang logam pada permukaan lantai yang sangat licin. Setelah anda berhenti mendorong, keping uang logam tersebut akan meluncur jauh lebih panjang (dibandingkan ketika mendorong di atas permukaan lantai kasar). Jika dituangkan minyak pelumas atau pelicin lainnya pada permukaan lantai tersebut, maka keping uang logam akan bergerak lebih jauh, dibandingkan dengan percobaan pertama.

Untuk mendorong sebuah benda yang mempunyai permukaan kasar di permukaan lantai dengan laju tetap, dibutuhkan gaya dengan besar tertentu. Untuk mendorong sebuah benda lain yang sama beratnya tetapi mempunyai permukaan yang licin di atas lantai dengan laju yang sama, akan diperlukan gaya yang lebih kecil. Jika dituangkan pelumas pada permukaan benda dan lantai, maka hampir tidak diperlukan gaya sama sekali untuk menggerakan benda.

Perhatikan bahwa pada percobaan di atas, besarnya gaya dorong semakin kecil akibat permukaan benda semakin licin. Selanjutnya, kita dapat membayangkan sebuah keadaan di mana keping uang logam tersebut tidak bersentuhan dengan lantai sama sekali atau ada pelicin sempurna antara permukaan bawah keping uang logam dengan lantai. Anggapan mengenai adanya pelicin sempurna tersebut membuat uang logam bergerak dengan laju tetap tanpa ada gaya yang diberikan. Ini adalah gagasan Eyang Galileo yang membayangkan dunia tanpa gesekan. Pemikiran ini kemudian membuatnya menyimpulkan bahwa jika tidak ada gaya yang diberikan kepada benda yang bergerak, maka benda tersebut terus bergerak lurus dengan laju tetap. Benda yang sedang bergerak akan melambat apabila pada benda bekerja gaya total. Dengan demikian, eyang Galileo menganggap bahwa gesekan merupakan gaya yang sama dengan tarikan atau dorongan biasa.

Untuk mendorong keping uang logam untuk bergerak pada permukaan lantai, dibutuhkan gaya dari tangan kita, hanya untuk mengimbangi gaya gesekan. Jika benda tersebut bergerak dengan laju tetap, gaya dorongan kita sama besar dengan gaya gesek; tetapi kedua gaya ini memiliki arah yang berbeda sehingga gaya total pada benda adalah nol. Hal ini sesuai dengan pendapat eyang Galileo karena benda bergerak dengan laju tetap apabila pada benda tidak bekerja gaya total.

Berdasarkan penemuan ini, eyang Newton membangun teori gerak-nya. Analisisnya dikemas dalam “Tiga Hukum Gerak Newton” yang terkenal sampai ke seluruh pelosok ruang kelas X SMA.

Hukum I Newton menyatakan bahwa :

Setiap benda tetap berada dalam keadaan diam atau bergerak dengan laju tetap sepanjang garis lurus (percepatan nol), kecuali terdapat gaya total pada benda tersebut.

Secara matematis, Hukum I Newton dapat dinyatakan sebagai berikut :hukum-i-newton-a

Kecenderungan suatu benda untuk tetap bergerak atau mempertahankan keadaan diam dinamakan inersia. Karenanya, hukum I Newton dikenal juga dengan julukan Hukum Inersia alias Hukum Kelembaman.

Sifat lembam ini dapat kita amati, misalnya ketika mengeluarkan saus tomat dari botol dengan mengguncangnya. Pertama, kita memulai dengan menggerakan botol ke bawah; pada saat kita mendorong botol ke atas, saus akan tetap bergerak ke bawah dan jatuh pada makanan. Kecenderungan sebuah benda yang diam untuk tetap diam juga diakibatkan oleh inersia alias kelembaman. Misalnya ketika kita menarik selembar kertas yang ditindih oleh tumpukan buku tebal dan berat. Jika lembar kertas tadi ditarik dengan cepat, maka tumpukan buku tersebut tidak bergerak.

Contoh lain yang sering kita alami adalah ketika berada di dalam mobil. Apabila mobil bergerak maju secara tiba-tiba, maka tubuh kita akan sempoyongan ke belakang, demikian juga ketika mobil tiba-tiba direm, tubuh kita akan sempoyongan ke depan. Hal ini diakibatkan karena tubuh kita memiliki kecenderungan untuk tetap diam jika kita diam dan juga memiliki kecenderungan untuk terus bergerak jika kita telah bergerak.

Perlu diingat bahwa yang terjadi pada Hukum Pertama Newton adalah gaya total. Sebagai contoh (perhatikan gambar di bawah), sebuah kotak yang diam di atas meja datar akan memiliki dua gaya yang bekerja padanya, yakni : gaya ke bawah akibat gaya gravitasi dan gaya dorong ke atas oleh permukaan meja. Dorongan ke atas dari permukaan meja, hanyalah sebesar gaya tarik ke bawah akibat gravitasi, jadi gaya total yang dialami buku adalah nol. Ingat bahwa besarnya gaya tersebut sama namun memiliki arah yang berlawanan sehingga saling menghilangkan. Karena besarnya gaya total = 0, buku tersebut berada dalam kesetimbangan, yang membuatnya diam alias tidak bergerak (benda bergerak dari keadaan diam jika gaya total tidak nol/jika ada gaya total. Pada kasus benda yang sedang bergerak, apabila gaya total nol maka benda bergerak dengan laju tetap). Gaya ke atas dari permukaan disebut Gaya Normal (N), karena arahnya normal atau tegak lurus terhadap permukaan yang bersentuhan.
1a

Gaya Gesekan - Gesekan Statis dan Kinetis

Pengantar

Pernahkah anda jatuh terpeleset karena menginjak sesuatu yang licin ? jika belum, silahkan mencoba ;)kita bisa terpeleset ketika menginjakkan kaki pada sesuatu yang licin karena tidak ada gaya gesek yang bekerja. Tanpa gaya gesek, kita tidak akan bisa berjalan, roda sepeda motor atau mobil juga tidak akan bisa berputar, demikian juga pesawat terbang akan selalu tergelincir. Masa sich ? berita di televisi dan surat kabar yang mengatakan bahwa pesawat terbang tergelincir merupakan salah satu bukti, demikian juga ketika anda terpeleset dan jatuh sambil tertawa. Kehidupan kita sehari-hari tidak terlepas dari bantuan gaya gesekan, walaupun terkadang tidak kita sadari. Pada kesempatan ini gurumuda akan membantu anda untuk mengenal lebih jauh Gaya Gesekan. Dalam pembahasan mengenai hukum Newton, kita akan selalu berhubungan dengan gaya gesekan. Oleh karena itu, pahamilah konsep Gaya Gesekan dengan baik sehingga anda bisa memahami Hukum Newton dengan lebih mudah. Selamat belajar, semoga sukses…

C. Hukum Newton II

Pengantar

Dalam Hukum I Newton, kita telah belajar bahwa jika tidak ada gaya total yang bekerja pada sebuah benda, maka benda tersebut akan tetap diam, atau jika benda tersebut sedang bergerak maka benda tersebut tetap bergerak dengan laju tetap pada lintasan lurus. Apa yang terjadi jika gaya total tidak sama dengan nol ? Sebelum menjawab pertanyaan tersebut, apakah anda sudah memahami pengertian gaya total ? Jika belum, silahkan pahami penjelasan gurumuda berikut ini. Selamat belajar Hukum II Newton, semoga sukses sampai di tempat tujuan ;)semoga Hukum Newton semakin dekat di hati anda :)

Pengertian Gaya Total

Seperti apakah gaya total itu ? Misalnya kita mendorong sekeping uang logam di atas meja; setelah bergerak, uang logam yang didorong tersebut berhenti. Ketika kita mendorong uang logam tadi, kita memberikan gaya berupa dorongan sehingga uang logam begerak. Nah, selain gaya dorongan kita, pada logam tersebut bekerja juga gaya gesekan udara dan gaya gesekan antara permukaan bawah uang logam dan permukaan meja, yang arahnya berlawanan dengan arah gaya dorongan kita. Apabila jumlah selisih antara kekuatan dorongan kita (Gaya dorong) dan gaya gesekan (baik gaya gesekan udara maupun gaya gesekan antara permukaan logam dan meja) adalah nol, maka uang logam berhenti bergerak/diam. Jika selisih antara gaya dorong yang kita berikan dengan gaya gesekan tidak nol, maka uang logam tersebut akan tetap bergerak. Selisih antara gaya dorong dan gaya gesekan tersebut dinamakan gaya total. Semoga ilustrasi sederhana ini bisa membantu anda memahami pengertian gaya total.

Hukum II Newton

Sekarang kita kembali ke pertanyaan awal pada bagian pengantar. Apa yang terjadi jika gaya total yang bekerja pada benda tidak sama dengan nol ? Newton mengatakan bahwa jika pada sebuah benda diberikan gaya total atau dengan kata lain, terdapat gaya total yang bekerja pada sebuah benda, maka benda yang diam akan bergerak, demikian juga benda yang sedang bergerak bertambah kelajuannya. Apabila arah gaya total berlawanan dengan arah gerak benda, maka gaya tersebut akan mengurangi laju gerak benda. Apabila arah gaya total berbeda dengan arah gerak benda maka arah kecepatan benda tersebut berubah dan mungkin besarnya juga berubah. Karena perubahan kecepatan merupakan percepatan maka kita dapat menyimpulkan bahwa gaya total yang bekerja pada benda menyebabkan benda tersebut mengalami percepatan. Arah percepatan tersebut sama dengan arah gaya total. Jika besar gaya total tetap atau tidak berubah, maka besar percepatan yang dialami benda juga tetap alias tidak berubah.

Bagaimana hubungan antara Percepatan dan Gaya ? Pernahkah anda mendorong sesuatu ? mungkin motor yang mogok atau gerobak sampah ;)jika belum pernah mendorong sesuatu seumur hidup anda, gurumuda menyarankan agar sebaiknya anda berlatih mendorong. Tapi jangan mendorong mobil orang lain yang sedang diparkir, apalagi mendorong teman anda hingga jatuh. Ok, kembali ke dorong…

Bayangkanlah anda mendorong sebuah gerobak sampah yang bau-nya menyengat. Usahakan sampai gerobak tersebut bergerak. Nah, ketika gerobak bergerak, kita dapat mengatakan bahwa terdapat gaya total yang bekerja pada gerobak itu. Silahkan dorong gerobak sampah itu dengan gaya tetap selama 30 detik. Ketika anda mendorong gerobak tersebut dengan gaya tetap selama 30 menit, tampak bahwa gerobak yang tadinya diam, sekarang bergerak dengan laju tertentu, anggap saja 4 km/jam. Sekarang, doronglah gerobak tersebut dengan gaya dua kali lebih besar (gerobaknya didiamin dulu). Apa yang anda amati ? wah, gawat kalau belajar sambil ngelamun… Jika anda mendorong gerobak sampah dengan gaya dua kali lipat, maka gerobak tersebut bergerak dengan laju 4 km/jam dua kali lebih cepat dibandingkan sebelumnya. Percepatan gerak gerobak dua kali lebih besar. Apabila anda mendorong gerobak dengan gaya lima kali lebih besar, maka percepatan gerobak juga bertambah lima kali lipat. Demikian seterusnya. Kita bisa menyimpulkan bahwa percepatan berbanding lurus dengan gaya total yang bekerja pada benda.

Seandainya percobaan mendorong gerobak sampah diulangi. Percobaan pertama, kita menggunakan gerobak yang terbuat dari kayu, sedangkan percobaan kedua kita menggunakan gerobak yang terbuat dari besi dan lebih berat. Jika anda mendorong gerobak besi dengan gaya dua kali lipat, apakah gerobak tersebut bergerak dengan laju 4 km/jam dua kali lebih cepat dibandingkan gerobak sebelumnya yang terbuat dari kayu ?

Tentu saja tidak karena percepatan juga bergantung pada massa benda. Anda dapat membuktikannya sendiri dengan melakukan percobaan di atas. Jika anda mendorong gerobak sampah yang terbuat dari sampah dengan gaya yang sama ketika anda mendorong gerobak yang terbuat dari kayu, makaakan terlihat bahwa percepatan gerobak besi lebih kecil. Apabila gaya total yang bekerja pada benda tersebut sama, maka makin besar massa benda, makin kecil percepatannya, sebaliknya makin kecil massa benda makin besar percepatannya.

Hubungan ini dikemas oleh eyang Newton dalam Hukum-nya yang laris manis di sekolah, yakni Hukum II Newton tentang Gerak :

Jika suatu gaya total bekerja pada benda, maka benda akan mengalami percepatan, di mana arah percepatan sama dengan arah gaya total yang bekerja padanya. Vektor gaya total sama dengan massa benda dikalikan dengan percepatan benda.5a

m adalah massa benda dan a adalah (vektor) percepatannya. Jika persamaan di atas ditulis dalam bentuk a = F/m, tampak bahwa percepatan sebuah benda berbanding lurus dengan resultan gaya yang bekerja padanya dan arahnya sejajar dengan gaya tersebut. Tampak juga bahwa percepatan berbanding terbalik dengan massa benda.

5b2

Jadi apabila tidak ada gaya total alias resultan gaya yang bekerja pada benda maka benda akan diam apabila benda tersebut sedang diam; atau benda tersebut bergerak dengan kecepatan tetap, jika benda sedang bergerak. Ini merupakan bunyi Hukum I Newton.

Setiap gaya F merupakan vektor yang memiliki besar dan arah. Persamaan hukum II Newton di atas dapat ditulis dalam bentuk komponen pada koordinat xyz alias koordinat tiga dimensi, antara lain :

5c1

Satuan massa adalah kilogram, satuan percepatan adalah kilogram meter per sekon kuadrat (kg m/s2). Satuan Gaya dalam Sistem Internasional adalah kg m/s2. Nama lain satuan ini adalah Newton; diberikan untuk menghargai jasa eyang Isaac Newton. Satuan-satuan tersebut merupaka satuan Sistem Internasional (SI). Dengan kata lain, satu Newton adalah gaya total yang diperlukan untuk memberikan percepatan sebesar 1 m/s2 kepada massa 1 kg. Hal ini berarti 1 Newton = 1 kg m/s2.

Dalam satuan CGS (centimeter, gram, sekon), satuan massa adalah gram (g), gaya adalah dyne. Satu dyne didefinisikan sebagai gaya total yang diperlukan untuk memberi percepatan sebesar 1 cm/s2 untuk benda bermassa 1 gram. Jadi 1 dyne = 1 gr cm/s2.

Kedua jenis satuan yang kita bahas di atas adalah satuan Sistem Internasional (SI). Untuk satuan Sistem Inggris (British Sistem), satuan gaya adalah pound (lb). 1 lb = 4,45 N. Satuan massa = slug. Dengan demikian, 1 pound didefinisikan sebagai gaya total yang diperlukan untuk memberi percepatan sebesar 1 ft/s2 kepada benda bermassa 1 slug.

Dalam perhitungan, sebaiknya anda menggunakan satuan MKS (meter, kilogram, sekon) SI. Jadi jika diketahui satuan dalam CGS atau sistem British, terlebih dahulu anda konversi.

D. Hukum Newton III

Pengantar

Pernahkah anda menendang batu ? belum… pernahkah dirimu menendang dirinya ? ;)Pernakah anda menendang atau memukul alias meninju sesuatu ? jika pernah, apa yang anda rasakan ? sakit… bisakah dirimu menjelaskan mengapa tangan atau kaki terasa sakit ? Apabila anda tidak bisa menjelaskannya, pelajarilah Hukum III Newton dengan penuh semangat :)

Hukum III Newton

Pada Hukum II Newton, kita belajar bahwa gaya-gaya mempengaruhi gerakan benda. Dari manakah gaya tersebut datang ? dalam kehidupan sehari-hari, kita mengamati bahwa gaya yang diberikan kepada sebuah benda, selalu berasal dari benda lain. gerobak bergerak karena kita yang mendorong, paku dapat tertanam karena dipukul dengan martil, buah mangga yang lezat jatuh karena ditarik oleh gravitasi bumi, demikian juga benda yang terbuat dari besi ditarik oleh magnet. Apakah semua benda bergerak karena diberikan gaya oleh benda lain ?

Eyang Newton mengatakan bahwa kenyataan dalam kehidupan sehari-hari tidak semuanya seperti itu. Ketika sebuah benda memberikan gaya kepada benda lain maka benda kedua tersebut membalas dengan memberikan gaya kepada benda pertama, di mana gaya yang diberikan sama besar tetapi berlawanan arah. Jadi gaya yang bekerja pada sebuah benda merupakan hasil interaksi dengan benda lain. Anda dapat melakukan percobaan untuk membuktikan hal ini. Tendanglah batu atau tembok dengan keras, maka kaki anda akan terasa sakit (jangan dilakukan). Mengapa kaki terasa sakit ? hal ini disebabkan karena ketika kita menendang tembok atau batu, tembok atau batu membalas memberikan gaya kepada kaki kita, di mana besar gaya tersebut sama, hanya berlawanan arah. Gaya yang kita berikan arahnya menuju batu atau tembok, sedangkan gaya yang diberikan oleh batu atau tembok arahnya menuju kaki kita. Ketika kita menendang bola, gaya yang kita berikan tersebut menggerakan bola. Pada saat yang sama, kita merasa gaya dari bola menekan kaki kita. Jika anda punya skate board, lakukanlah percobaan berikut ini sehingga semakin menambah pemahaman anda. letakan papan luncur alias skate board di dekat sebuah tembok. Berdirilah di atas skate board (papan luncur) tersebut dan doronglah tembok dihadapan anda. Apa yang anda alami ? skate board tersebut meluncur ke belakang. Aneh khan ? padahal anda tidak mendorong skate board ke belakang. Skate board meluncur ke belakang karena tembok yang anda dorong membalas memberikan gaya dorong kepada anda, di mana arah gaya yang diberikan tembok berlawanan arah dengan arah dorongan anda. anda mendorong tembok ke depan, sedangkan tembok mendorong anda ke belakang sehingga skate board kesayangan anda meluncur ke belakang. Jika anda tinggal di tepi pantai dan termasuk anak pantai, lakukanlah percobaan dengan menaiki perahu dan melemparkan sesuatu, entah batu atau benda lain ke luar dari perahu. Lakukanlah hal ini ketika perahu sedang diam. Amati bahwa perahu akan bergerak ke belakang jika anda melempar ke depan, dan sebaliknya. Serius… diriku pernah mencobanya. Nah, semua penjelasan panjang lebar ini adalah inti Hukum III Newton.

Apabila sebuah benda memberikan gaya kepada benda lain, maka benda kedua memberikan gaya kepada benda yang pertama. Kedua gaya tersebut memiliki besar yang sama tetapi berlawanan arah.

Secara matematis Hukum III Newton dapat ditulis sebagai berikut :

F A ke B = - F B ke A

F A ke B adalah gaya yang diberikan oleh benda A kepada benda B, sedangkan F B ke A adalah gaya yang yang diberikan benda B kepada benda A. Misalnya ketika anda menendang sebuah batu, maka gaya yang anda berikan adalah F A ke B, dan gaya ini bekerja pada batu. Gaya yang diberikan oleh batu kepada kaki anda adalah - F B ke A. Tanda negatif menunjukkan bahwa arah gaya reaksi tersebut berlawanan dengan gaya aksi yang anda berikan. Jika anda menggambar tanda panah yang melambangkan interaksi kedua gaya ini, maka gaya F A ke B digambar pada batu, sedangkan gaya yang diberikan batu kepada kaki anda, - F B ke A, digambarkan pada kaki anda.

Persamaan Hukum III Newton di atas juga bisa kita tulis sebagai berikut :

Faksi = -Freaksi

Hukum warisan eyang Newton ini dikenal dengan julukan hukum aksi-reaksi. Ada aksi maka ada reaksi, yang besarnya sama dan berlawanan arah. Kadang-kadang kedua gaya tersebut disebut pasangan aksi-reaksi. Ingat bahwa kedua gaya tersebut (gaya aksi-gaya reaksi) bekerja pada benda yang berbeda. Berbeda dengan Hukum I Newton dan Hukum II Newton yang menjelaskan gaya yang bekerja pada benda yang sama.

Gaya aksi dan reaksi adalah gaya kontak yang terjadi ketika kedua benda bersentuhan. Walaupun demikian, Hukum III Newton juga berlaku untuk gaya tak sentuh, seperti gaya gravitasi yang menarik buah mangga kesayangan anda. Ketika kita menjatuhkan batu, misalnya, antara bumi dan batu saling dipercepat satu dengan lain. batu bergerak menuju ke permukaan bumi, bumi juga bergerak menuju batu. Gaya total yang bekerja pada bumi dan batu besarnya sama. Bumi bergerak ke arah batu yang jatuh ? masa sich… karena massa bumi sangat besar maka percepatan yang dialami bumi sangat kecil (Ingat hubungan antara massa dan percepatan pada persamaan hukum II Newton). Walaupun secara makroskopis tidak tampak, tetapi bumi juga bergerak menuju batu atau benda yang jatuh akibat gravitasi. Bumi menarik batu, batu juga membalas gaya tarik bumi, di mana besar gaya tersebut sama namun arahnya berlawanan.

Hukum III Newton dalam Kehidupan Sehari-hari

Konsep Hukum III Newton sebenarnya sering kita alami dalam kehidupan sehari-hari, walau kadang tidak kita sadari. Hal apa saja dalam kehidupan sehari-hari yang menggunakan konsep Hukum III Newton ?

Hukum III Newton berlaku ketika kita berjalan atau berlari

Ketika berjalan, telapak kaki kita memberikan gaya aksi dengan mendorong permukaan tanah atau lantai ke belakang. Permukaan tanah atau lantai memberikan gaya reaksi kepada kita dengan mendorong telapak kaki kita ke depan, sehingga kita berjalan ke depan. Ketika berjalan mundur, telapak kaki kita mendorong permukaan tanah atau lantai ke depan. Sebagai reaksi, permukaan tanah atau lantai mendorong telapak kaki kita ke belakang sehingga kita bisa berjalan mundur. Besarnya gaya aksi dan reaksi sama, tetapi arahnya berlawanan. Telapak kaki kita mendorong lantai ke belakang, lantai mendorong telapak kaki kita ke depan. Ketika kita berjalan lambat, gaya yang kita berikan kecil, sehingga gaya reaksi yang diberikan oleh lantai juga kecil, akibatnya kita berjalan pelan. Pada saat kita berjalan cepat, telapak kaki kita menekan lantai lebih kuat, akibatnya gaya reaksi yang diberikan lantai juga besar sehingga kita didorong dengan kuat ke depan. Dirimu dapat melakukan percobaan ini untuk membuktikannya. Ketika kita berlari, gaya aksi berupa dorongan yang diberikan oleh telapak kaki kita kepada permukaan tanah sangat besar sehingga gaya reaksi yang diberikan oleh permukaan tanah kepada telapak kaki kita juga sangat besar. Akibatnya kita bisa berlari dengan kencang. Jadi besarnya gaya reaksi yang diberikan oleh permukaan tanah atau lantai kepada telapak kaki kita sebanding alias sama besar dengan gaya aksi yang kita berikan dan arahnya berlawanan.

Hukum III Newton berlaku ketika kita berenang

Apakah dirimu bisa berenang ? kalo belum bisa, ayo belajar berenang… gampang kok. Kaya belajar naik sepeda atau motor, awalnya memang agak sulit tapi kalo sering latihan ntar juga mahir, asyik lagi.. :)

Ketika kita berenang, kaki dan tangan kita mendorong air ke belakang. Sebagai reaksi, air mendorong kaki dan tangan kita ke depan, sehingga kita berenang ke depan.

E. KONSEP GAYA GESEKAN

Gesekan biasanya terjadi di antara dua permukaan benda yang bersentuhan, baik terhadap udara, air atau benda padat. Ketika sebuah benda bergerak di udara, permukaan benda tersebut akan bersentuhan dengan udara sehingga terjadi gesekan antara benda tersebut dengan udara. Demikian juga ketika bergerak di dalam air. Gaya gesekan juga selalu terjadi antara permukaan benda padat yang bersentuhan, sekalipun benda tersebut sangat licin. Permukaan benda yang sangat licin pun sebenarnya sangat kasar dalam skala mikroskopis. Ketika kita mencoba menggerakan sebuah benda, tonjolan-tonjolan miskroskopis ini mengganggu gerak tersebut. Sebagai tambahan, pada tingkat atom (ingat bahwa semua materi tersusun dari atom-atom), sebuah tonjolan pada permukaan menyebabkan atom-atom sangat dekat dengan permukaan lainnya, sehingga gaya-gaya listrik di antara atom dapat membentuk ikatan kimia, sebagai penyatu kecil di antara dua permukaan benda yang bergerak. Ketika sebuah benda bergerak, misalnya ketika kita mendorong sebuah buku pada permukaan meja, gerakan buku tersebut mengalami hambatan dan akhirnya berhenti, karena terjadi gesekan antara permukaan bawah buku dengan permukaan meja serta gesekan antara permukaan buku dengan udara, di mana dalam skala miskropis, hal ini terjadi akibat pembentukan dan pelepasan ikatan tersebut.

Jika permukaan suatu benda bergeseran dengan permukaan benda lain, masing-masing benda tersebut melakukan gaya gesekan antara satu dengan yang lain. Gaya gesekan pada benda yang bergerak selalu berlawanan arah dengan arah gerakan benda tersebut. Selain menghambat gerak benda, gesekan dapat menimbulkan aus dan kerusakan. Hal ini dapat kita amati pada mesin kendaraan. Misalnya ketika kita memberikan minyak pelumas pada mesin sepeda motor, sebenarnya kita ingin mengurangi gaya gesekan yang terjadi di dalam mesin. Jika tidak diberi minyak pelumas maka mesin kendaraan kita cepat rusak. Contoh ini merupakan salah satu kerugian yang disebabkan oleh gaya gesek.

Kita dapat berjalan karena terdapat gaya gesek antara permukaan sandal atau sepatu dengan permukaan tanah. Jika anda tidak biasa menggunakan alas kaki ;)gaya gesek tersebut bekerja antara permukaan bawah kaki dengan permukaan tanah atau lantai. Alas sepatu atau sandal biasanya kasar / bergerigi alias tidak licin. Para pembuat sepatu dan sandal membuatnya demikian karena mereka sudah mengetahui konsep gaya gesekan. Demikian juga alas sepatu bola yang dipakai oleh pemain sepak bola, yang terdiri dari tonjolan-tonjolan kecil. Apabila alas sepatu atau sandal sangat licin, maka anda akan terpeleset ketika berjalan di atas lantai yang licin atau gaya gesek yang bekerja sangat kecil sehingga akan mempersulit gerakan anda. Ini merupakan contoh gaya gesek yang menguntungkan.

Ketika sebuah benda berguling di atas suatu permukaan (misalnya roda kendaraan yang berputar atau bola yang berguling di tanah), gaya gesekan tetap ada walaupun lebih kecil dibandingkan dengan ketika benda tersebut meluncur di atas permukaan benda lain. Gaya gesekan yang bekerja pada benda yang berguling di atas permukaan benda lainnya dikenal dengan gaya gesekan rotasi. Sedangkan gaya gesekan yang bekerja pada permukaan benda yang meluncur di atas permukaan benda lain (misalnya buku yang didorong di atas permukaan meja) disebut sebagai gaya gesekan translasi. Pada kesempatan ini kita hanya membahas gaya gesekan translasi, yaitu gaya gesekan yang bekerja pada benda padat yang meluncur di atas benda padat lainnya.

D.1. GAYA GESEKAN STATIK DAN KINETIK

Lakukanlah percobaan berikut ini untuk menambah pemahaman anda. Letakanlah sebuah balok pada permukaan meja. Ikatlah sebuah neraca pegas (alat untuk mengukur besar gaya) pada sisi depan balok tersebut. Sekarang, tarik pegas perlahan-lahan sambil mengamati perubahan skala pada neraca pegas. Tampak bahwa balok tidak bergerak jika diberikan gaya yang kecil. Balok belum bergerak karena gaya tarik yang kita berikan pada balok diimbangi oleh gaya gesekan antara alas balok dengan permukaan meja. Ketika balok belum bergerak, besarnya gaya gesekan sama dengan gaya tarik yang kita berikan. Jika tarikan kita semakin kuat, terlihat bahwa pada suatu harga tertentu balok mulai bergerak. Pada saat balok mulai bergerak, gaya yang sama menghasilkan gaya dipercepat. Dengan memperkecil kembali gaya tarik tersebut, kita dapat menjaga agar balok bergerak dengan laju tetap; tanpa percepatan. Kita juga bisa mempercepat gerak balok tersebut dengan menambah gaya tarik.

Gaya gesekan yang bekerja pada dua permukaan benda yang bersentuhan, ketika benda tersebut belum bergerak disebut gaya gesek statik (lambangnya fs). Gaya gesek statis yang maksimum sama dengan gaya terkecil yang dibutuhkan agar benda mulai bergerak. Ketika benda telah bergerak, gaya gesekan antara dua permukaan biasanya berkurang sehingga diperlukan gaya yang lebih kecil agar benda bergerak dengan laju tetap. Ketika benda telah bergerak, gaya gesekan masih bekerja pada permukaan benda yang bersentuhan tersebut. Gaya gesekan yang bekerja ketika benda bergerak disebut gaya gesekan kinetik (lambangnya fk) (kinetik berasal dari bahasa yunani yang berarti “bergerak”). Ketika sebuah benda bergerak pada permukaan benda lain, gaya gesekan bekerja berlawanan arah terhadap kecepatan benda. Hasil eksperimen menunjukkan bahwa pada permukaan benda yang kering tanpa pelumas, besar gaya gesekan sebanding dengan Gaya Normal.

D.2. KOOFISIEN GESEKAN STATIK DAN

gesekan-a

Perhatikan bahwa hubungan antara gaya normal dan gaya gesekan pada persamaan di atas hanya untuk besarnya saja. Arah kedua gaya tersebut selalu saling tegak lurus satu dengan yang lain, sebagaimana diperlihatkan pada gambar di bawah ini. Berikut ini keterangan untuk gambar di bawah : fk adalah gaya gesekan kinetik, fs adalah gaya gesekan statik, F adalah gaya tarik, N adalah gaya normal, w adalah gaya berat, m adalah massa, g adalah percepatan gravitasi.

3b

3c

No Comment»